Darko Mitrovic
Currently, I am a principal investigator in the frame of the stand alone project "Traces of solutions of evolution equations" at the University of Vienna.

Education
BSc University of Montenegro, 1999
MS University of Novi Sad, 2001
PhDÂ University of Montenegro and
Moscow Institute of Economics and Mathematics, 2005
10 most important publications
1. Karlsen, K.H.; Mitrovi´c, D.; Nedeljkov, M.: On the viscosity approximation of conservation laws with non-crossing discontinuous flux, Journal of Differential Equations 420 (2025), 316–334. https: //doi.org/10.1016/j.jde.2024.11.056
2. Mitrovic, D.; Novak, A.: Navigating the Complex Landscape of Shock Filter Cahn–Hilliard Equation: From Regularized to Entropy Solutions, Archive for Rational Mechanics and Analysis 248 (2024), 105. https://doi.org/10.1007/s00205-024-02057-w
3. Karlsen, K.H.; Kunzinger, M.; Mitrovic, D.: A dynamic capillarity equation with stochastic forcing on manifolds: a singular limit problem, Transactions of the American Mathematical Society 377 (2024), 85–166. https://doi.org/10.1090/tran/9050
4. Erceg, M.; Miˇ sur, M,; Mitrovic, D.: Velocity averaging for diffusive transport equations with discontinuous f lux, Journal of the London Mathematical Society, 107 (2023), 658-–703. https://doi.org/10.1112/ jlms.12694
5. Erceg, M.; Mitrovic, D.: Strong traces to degenerate parabolic equations, SIAM Journal of Mathematical Analysis 54 (2022) https://doi.org/10.1137/21M1425530
​
6. Kalisch, H.; Mitrovic, D.; Teyekpiti, V.: Existence and Uniqueness of Singular Solutions for a Conservation Law Arising in Magnetohydrodynamics, Nonlinearity 31 (2018), 5463–5483. http://dx.doi.org/10. 1088/1361-6544/aae04b
7. Misur, M.; Mitrovic, D.: On a generalization of compensated compactness in the Lp−Lq setting, Journal of Functional Analysis 268 (2015), 1904-1927. https://doi.org/10.1016/j.jfa.2014.12.008
8. Andreianov, B.; Mitrovic, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincar´ e C Analyse Non Lin´ eaire, 32 (2015), 1307–1335. https://doi.org/10. 1016/j.anihpc.2014.08.002
9. Lazar, M.; Mitrovic, D.: Velocity averaging– general framework, Dynamics of Partial Differential Equations, 9 (2012), 239–260. https://dx.doi.org/10.4310/DPDE.2012.v9.n3.a3
10. Mitrovic, D.: New Entropy Conditions for Scalar Conservation Laws with Discontinuous Flux, Discrete and Continuous Dynamical Systems-A, 30 (2011), 1191-1210. http://dx.doi.org/10.3934/dcds. 2011.30.119
Peer reviewed publications
55. Karlsen, K.H.; Mitrovi´c, D.; Nedeljkov, M.: On the viscosity approximation of conservation laws with non-crossing discontinuous flux, Journal of Differential Equations 420 (2025), 316–334. https: //doi.org/10.1016/j.jde.2024.11.056
​
54. Mitrovic, D.; Novak, A.: Navigating the Complex Landscape of Shock Filter Cahn–Hilliard Equation: From Regularized to Entropy Solutions, Archive for Rational Mechanics and Analysis 248 (2024), 105. https://doi.org/10.1007/s00205-024-02057-w
​
53. Karlsen, K.H.; Kunzinger, M.; Mitrovic, D.: A dynamic capillarity equation with stochastic forcing on manifolds: a singular limit problem, Transactions of the American Mathematical Society 377 (2024), 85–166. https://doi.org/10.1090/tran/9050
52.D. Mitrovic, : Pre-electoral coalition agreement from the Black–Scholes point of view. Sci Rep 14, 3227 (2024). https://doi.org/10.1038/s41598-024-53674-0
​
51. M.Graf, K.Kunzinger, D.Mitrovic, Galerkin-type methods for strictly parabolic equations on compact Riemannian manifolds, Annali della Scuola normale superiore di Pisa. Classe di scienze, 25 (2024), 689–722 https://doi.org/10.2422/2036-2145.202006_016
​
50. M.~Erceg, M.~Mi\v sur, D.~Mitrovic, {\em Velocity averaging for diffusive transport equations with discontinuous flux}, Journal of the London Mathematical Society, available online. \url{https://doi.org/10.1112/jlms.12694}
​
49. M.~Jolic, S.~Konjik, D.~Mitrovic, {\em On solvability for a class of nonlinear system of differential equations with the Caputo fractional derivative}, Fract. Calc. Appl. Anal. 25 (2022), 2126--2138. \url{https://doi.org/10.1007/s13540-022-00085-5}
48. H.~Kalisch, D.~Mitrovic, {\em On existence and admissibility of singular solutions for systems of conservation laws}, Int. J. Appl. Comput. Math. 8 (2022), 20pp. \url{https://doi.org/10.1007/s40819-022-01368-4}
47. M.~Erceg, D.~Mitrovic, {\em Strong traces do degenerate parabolic equations}, SIAM Journal of Mathematical Analysis 54 (2022), 1775--1796. \url{https://doi.org/10.1137/21M1425530}
46. J.~Djordjevic, S.~Konjik, D.~Mitrovic, A.~Novak, {\em Global Controllability for Quasilinear Non-negative Definite System of ODEs and SDEs}, Journal of Optimization Theory and Applications, 190 (2021), 316--338. \url{https://dx.doi.org/10.1007/s10957-021-01886-z}
​
45. D.Mitrovic, Dj.Vujadinovic, The structure of A-free measures revisited, Adv. Nonlinear Anal. 10 (2021), 194-201
​
44. A.L.Brkic, D.Mitrovic, A.Novak, On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation, J. Adv. Research 25 (2020), 67-76.
​
43. N.Antonic, D.Mitrovic, Lj.Palle, On relationship between H-distributions and microlocal compactness forms, Rendiconti Lincei Matematica e Applicazioni, 31 (2020), 297-318.
​
42. K.Burazin, D.Mitrovic, Apriori Estimates for Fractional Diffusion Equation, Optim. Lett. 13 (2019), 1793-1801. http://dx.doi.org/10.1007/s11590-018-1332-0
​
41. M.Misur, D.Mitrovic, On compactness of commutator of multiplication and pseudodifferential operator, Journal of Pseudo-Differential Operators and Applications, 10 (2019), 121-131. https://doi.org/10.1007/s11868-018-0239-y
​
40. H.Kalisch, D.Mitrovic, V.Teyekpiti, Existence and Uniqueness of Singular Solutions for a Conservation Law Arising in Magnetohydrodynamics, Nonlinearity 31 (2018), 5463-5483. http://dx.doi.org/10.1088/1361-6544/aae04b
​
39. Mitrovic, D.; Novak, A.; Uzunovic, T.: Averaged Control for Fractional ODEs and Fractional Diffusion Equations, Journal of function spaces 2018 (2018), ID 8095728, 12 pages. http://dx.doi.org/10.1155/2018/8095728
​
38. Antonic, N.; Misur, M.; Mitrovic, D.: On compactness of commutators of multiplications and Fourier multipliers, Mediterranean Journal of Mathematics 15 (2018), 170 (13 pages). http://dx.doi.org/10.1007/s00009-018-1215-8
​
37. Mitrovi\'c, D.; Novak, A.: Transport-collapse scheme for heterogeneous scalar conservation laws, Journal of Hyperbolic Differential Equations 15 (2018), 119-132. http://dx.doi.org/10.4310/CMS.2017.v15.n4.a7
​
36. Graf, M.; Kunzinger, M.; Mitrovic, D.: Well-posedness theory for degenerate parabolic equations on Riemannian manifolds, Journal of Differential Equations 263 (2017), 4787-4825. https://doi.org/10.1016/j.jde.2017.06.001
​
35. Kalisch H.; Mitrović, D.; Vincent Teyekpiti, V.: Delta Shock Waves in Shallow Water Flow, Physics Letters A 381 (2017), 1138-1144
​
34. Lazar, M; Mitrović, D: Existence of solutions for a scalar conservation law with a flux of low regularity, Electronic Journal of Differential Equations Vol. 2016 (2016), No. 325, pp. 1-18.
​
33. Mitrovic, D.; Novak, A.: Transport-collapse scheme for scalar conservation laws - initial-boundary value problem, Communications in Mathematical Sciences 15 (2017), 1055-1071. http://dx.doi.org/10.4310/CMS.2017.v15.n4.a7
​
32. Lazar, M; Mitrovic, D.: On a new Class of Functional Spacces with an Application to Velocity Averaging, Glasnik Matematicki 52 (2017), 115–130.
​
31. Misur, M; Mitrovic, D.; Novak, A.: On the Dirichlet-Neumann boundary problem for scalar conservation laws, Mathematical Modelling and Analysis 21 (2016), 685-698.
​
30. Marohnic, M.; Mitrovic, D. and Novak, A.: On a front evolution in porous media with a source - analysis and numerics, Bulletin of the Brazilian Mathematical Society, 47 (2016), 521-532
​
29. Kalisch, H.; Mitrovic, D.; Nordbotten, J.M.: Non-standard Shocks in the BuckleyLeverett Equation, Journal of Mathematical Analysis and Applications, 428 (2015), 882–895.
​
28. Mitrovic, D.; Novak, A.: Two phase nonturbulent flow with applications, Mathematical Problems in Engineering, Volume 2015 (2015), Article ID 439704, 8 pages
​
27. Misur, M.; Mitrovic, D.: On a generalization of compensated compactness in the $L^p-L^q$ setting, Journal of Functional Analysis 268 (2015), 1904-1927.
​
26. Kalisch, H.; Mitrovic, D., Nordbotten, J: Rayleigh-Taylor instability of immiscible fluids in porous media, Continuum Mechanics and Thermodynamics, 28 (2016), 721-731
​
25. Andreianov, B.; Mitrovic, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincaré C Analyse Non Linéaire, 32 (2015), 1307-1335.
​
24. Aleksic, J.; Mitrovic, D.: Strong traces for averaged solutions of heterogeneous ultraparabolic transport equations, J. of Hyperbolic Differential Equations 4 (2013), 659-676.
​
23. Mitrovic, D.: On a Leibnitz type formula for fractional derivatives, Filomat 27 (2013), 1141–1146.
​
22. Lazar, M; Mitrovic, D.: On an extension of a bilinear functional on Lp(Rd)xE to a Bochner space with an application on velocity averaging, C. R. Acad. Sci. Paris Ser. I Math. 351 (2013), 261--264.
​
21. Lazar, M.; Mitrovic, D.: Velocity averaging – general framework, Dynamics of Partial Differential Equations, 9 (2012), 239-260
​
20. Kalisch, H.; Mitrovic, D.: Singular solutions for the shallow water equations, IMA J. Appl. Maths, 77 (2012), 340-350.
​
19. Kalisch, H.; Mitrovic, D.: Singular solutions of a fully nonlinear 2x2 system of conservation laws, Proceedings of the Edinburgh Mathematical Society, 55 (2012), 711-729.
​
18. Mitrovic, D.; Nordbotten, J.M.; Kalisch, H.: Dynamics of the interface between immiscible liquids of different densities with low Froude number, Nonlinear Analysis Real World Applications, 15 (2014), 361–366
​
17. Antonic, N.; Mitrovic, D.: H-distributions—an extension of the H-distributions in the Lp-Lq setting, Abstract and Applied Analysis, Volume 2011 (2011), Article ID 901084, 12 pages, doi:10.1155/2011/901084
​
16. Mitrovic, D.; Ivec, I.: A Generalization of $H$-measures and Application on Purely Fractional Scalar Conservation Laws, Communication on Pure and Applied Analysis, 10 (2011), 1617 - 1627.
​
15. Lazar, M.; Mitrovic, D.: The velocity averaging for a heterogeneous heat type equation, Mathematical Communications, 16(2011), 271-282.
​
14. Danilov, V.G.; Mitrovic, D.: Shock Wave Formation Process for a Multidimensional Scalar Conservation Law, Quarterly of Applied Mathematics, 69 (2011), 613-634.
​
13. Mitrovic, D.: New Entropy Conditions for Scalar Conservation Laws with Discontinuous Flux, Discrete and Continuous Dynamical Systems-A, 30 (2011), 1191-1210
​
12. Mitrovic, D.: Existence and Stability of Multidimensional Scalar Conservation Laws with Discontinuous Flux, Networks and Heterogeneous Media, 5 (2010), 163-188
​
11. Mitrovic, D.; Bojkovic, V.; Danilov, V.G.: Linearization of the Riemann problem for a triangular system of conservation laws and delta shock wave formation process, Mathematical Methods in the Applied Sciences, Vol. 33 (2010), 904 - 921
​
10. Holden, H.; Karlsen, K.H.; Mitrovic, D.; Panov, E.Yu.: Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux functions, Acta Mathematica Scientia B 29 (2009), 1573-1672
​
9. Aleksic, J.; Mitrovic, D.: On the compactness for two dimensional scalar conservation laws with discontinuous flux, Communications in Mathematical Sciences, 7 (2009), 963-971.
​
8. Aleksic, J.; Mitrovic, D.; Pilipovic, S.: Hyperbolic conservation laws with vanishing nonlinear diffusion and linear dispersion in heterogeneous media, Journal of Evolution Equations, 9 (2009), 809-828.
7. Mitrovic, D.: On the heat equation involving the δ-distribution as a coefficient, Mathematical and Computer Modeling, 50 (2009) 109-115
​
6. Danilov, V. G.; Mitrovic, D.: Smooth Approximations of Global in Time Solutions to Scalar Conservation Laws, Abstract and Applied Analysis, Volume 2009, Article ID 350762, 26 pages
​
5. Holden, H.; Karlsen, K.H.; Mitrovic, D: Zero diffusion dispersion limits for scalar conservation law with discontinuous flux function, International Journal of Differential Equations, Volume 2009, Article ID 279818, 33 pages.
​
4. Danilov, V. G.; Mitrovic, D.: Delta shock wave formation in the case of triangular hyperbolic system of conservation laws, Journal of Differential Equations, 245 (2008) 3704-3734
​
3. Mitrovic, D.; Nedeljkov, M.: Delta shock waves as a limit of shock waves, Journal of Hyperbolic Differential Equations, 4 (2007), 629-653.
2. Mitrovic, D.; Pilipovic, S.: Approximations of linear Dirichlet problems with singularities, J. Math. Anal. Appl. 313 (2006), 98-119.
1. Danilov, V.; Mitrovic, D.: Weak asymptotics of shock wave formation process, Nonlinear Anal. 61 (2005), 613-635.
Non-peer reviewed publications
7. K.H.Karlsen, M.Kunzinger, D.Mitrovic, {\em A dynamic capillarity equation with stochastic forcing on manifolds: a singular limit problem}, \url{https://arxiv.org/abs/2210.16882}.
​
6. M.Jolic, S.Konjik, D.Mitrovic, {\em Control theory for nonlinear fractional dispersive systems}, \url{https://arxiv.org/abs/2212.12692}.
​
5. Mitrovic, D.: Scalar conservation law with discontinuous flux -
thickened entropy conditions and doubling of variables, Mathematica Aeterna, Vol. 1, 2011, no. 03, 163 --172
​
4. Bojkovic, V.; Mitrovic, D.: A characterization of Riemann invariants for 2×2 system of hyperbolic conservation laws, Journal of Mathematical Sciences: Advances and Applications, Vol. 1, Number 3 (2008), 579-586
​
3. Mitrovic, D.: Singularity formation for a pressureless gas dynamics system of conservation laws, IEEE Catalog No. 06EX1351, ISBN 5-9651-0226-7, Days on Diffraction 2006, 197-208,
(http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4154034)
​
2. Danilov, V.G.; Mitrovic, D.: New approach to shocks generation for conservation laws. Example: global solution to Hopf equation, Matematicki Vesnik 56 (2004), 23-46.
​
1. Mitrovic, D.: Uniform in tєR description of shock wave formation process and application to convex scalar conservation law, Mathematica Montisnigri, Vol XVII (2004) 37-55.


