top of page

Darko Mitrovic

Currently, I am a principal investigator in the frame of the stand alone project "Traces of solutions of evolution equations" at the University of Vienna.

Home: Welcome
image.jpg

Education

BSc University of Montenegro, 1999

MS University of Novi Sad, 2001

PhD University of Montenegro and
Moscow Institute of Economics and Mathematics, 2005

Home: Education

10 most important publications

1. Karlsen, K.H.; Mitrovi´c, D.; Nedeljkov, M.: On the viscosity approximation of conservation laws with non-crossing discontinuous flux, Journal of Differential Equations 420 (2025), 316–334. https: //doi.org/10.1016/j.jde.2024.11.056

 

2. Mitrovic, D.; Novak, A.: Navigating the Complex Landscape of Shock Filter Cahn–Hilliard Equation: From Regularized to Entropy Solutions, Archive for Rational Mechanics and Analysis 248 (2024), 105. https://doi.org/10.1007/s00205-024-02057-w

 

3. Karlsen, K.H.; Kunzinger, M.; Mitrovic, D.: A dynamic capillarity equation with stochastic forcing on manifolds: a singular limit problem, Transactions of the American Mathematical Society 377 (2024), 85–166. https://doi.org/10.1090/tran/9050

 

4. Erceg, M.; Miˇ sur, M,; Mitrovic, D.: Velocity averaging for diffusive transport equations with discontinuous f lux, Journal of the London Mathematical Society, 107 (2023), 658-–703. https://doi.org/10.1112/ jlms.12694

 

5. Erceg, M.; Mitrovic, D.: Strong traces to degenerate parabolic equations, SIAM Journal of Mathematical Analysis 54 (2022) https://doi.org/10.1137/21M1425530

​

6. Kalisch, H.; Mitrovic, D.; Teyekpiti, V.: Existence and Uniqueness of Singular Solutions for a Conservation Law Arising in Magnetohydrodynamics, Nonlinearity 31 (2018), 5463–5483. http://dx.doi.org/10. 1088/1361-6544/aae04b

 

7. Misur, M.; Mitrovic, D.: On a generalization of compensated compactness in the Lp−Lq setting, Journal of Functional Analysis 268 (2015), 1904-1927. https://doi.org/10.1016/j.jfa.2014.12.008

 

8. Andreianov, B.; Mitrovic, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincar´ e C Analyse Non Lin´ eaire, 32 (2015), 1307–1335. https://doi.org/10. 1016/j.anihpc.2014.08.002

 

9. Lazar, M.; Mitrovic, D.: Velocity averaging– general framework, Dynamics of Partial Differential Equations, 9 (2012), 239–260. https://dx.doi.org/10.4310/DPDE.2012.v9.n3.a3

 

10. Mitrovic, D.: New Entropy Conditions for Scalar Conservation Laws with Discontinuous Flux, Discrete and Continuous Dynamical Systems-A, 30 (2011), 1191-1210. http://dx.doi.org/10.3934/dcds. 2011.30.119

Home: About Me

Peer reviewed publications

55. Karlsen, K.H.; Mitrovi´c, D.; Nedeljkov, M.: On the viscosity approximation of conservation laws with non-crossing discontinuous flux, Journal of Differential Equations 420 (2025), 316–334. https: //doi.org/10.1016/j.jde.2024.11.056

​

54. Mitrovic, D.; Novak, A.: Navigating the Complex Landscape of Shock Filter Cahn–Hilliard Equation: From Regularized to Entropy Solutions, Archive for Rational Mechanics and Analysis 248 (2024), 105. https://doi.org/10.1007/s00205-024-02057-w

​

53. Karlsen, K.H.; Kunzinger, M.; Mitrovic, D.: A dynamic capillarity equation with stochastic forcing on manifolds: a singular limit problem, Transactions of the American Mathematical Society 377 (2024), 85–166. https://doi.org/10.1090/tran/9050

 

52.D. Mitrovic, : Pre-electoral coalition agreement from the Black–Scholes point of view. Sci Rep 14, 3227 (2024). https://doi.org/10.1038/s41598-024-53674-0

​

51. M.Graf, K.Kunzinger, D.Mitrovic, Galerkin-type methods for strictly parabolic equations on compact Riemannian manifolds, Annali della Scuola normale superiore di Pisa. Classe di scienze, 25 (2024), 689–722 https://doi.org/10.2422/2036-2145.202006_016

​

50. M.~Erceg, M.~Mi\v sur, D.~Mitrovic, {\em Velocity averaging for diffusive transport equations with discontinuous flux}, Journal of the London Mathematical Society, available online. \url{https://doi.org/10.1112/jlms.12694}

​

 

49. M.~Jolic, S.~Konjik, D.~Mitrovic, {\em On solvability for a class of nonlinear system of differential equations with the Caputo fractional derivative}, Fract. Calc. Appl. Anal. 25 (2022), 2126--2138. \url{https://doi.org/10.1007/s13540-022-00085-5}

 

48. H.~Kalisch, D.~Mitrovic, {\em On existence and admissibility of singular solutions for systems of conservation laws}, Int. J. Appl. Comput. Math. 8 (2022), 20pp. \url{https://doi.org/10.1007/s40819-022-01368-4}

 

47. M.~Erceg, D.~Mitrovic, {\em Strong traces do degenerate parabolic equations}, SIAM Journal of Mathematical Analysis 54 (2022), 1775--1796. \url{https://doi.org/10.1137/21M1425530}

 

46.  J.~Djordjevic, S.~Konjik, D.~Mitrovic, A.~Novak, {\em Global Controllability for Quasilinear Non-negative Definite System of ODEs and SDEs}, Journal of Optimization Theory and Applications, 190 (2021), 316--338. \url{https://dx.doi.org/10.1007/s10957-021-01886-z}

​

45. D.Mitrovic, Dj.Vujadinovic, The structure of A-free measures revisited, Adv. Nonlinear Anal. 10 (2021), 194-201

​

44. A.L.Brkic, D.Mitrovic, A.Novak, On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation, J. Adv. Research 25 (2020), 67-76.

​

43. N.Antonic, D.Mitrovic, Lj.Palle, On relationship between H-distributions and microlocal compactness forms, Rendiconti Lincei Matematica e Applicazioni, 31 (2020), 297-318. 

​

42. K.Burazin, D.Mitrovic, Apriori Estimates for Fractional Diffusion Equation, Optim. Lett. 13 (2019), 1793-1801. http://dx.doi.org/10.1007/s11590-018-1332-0

​

41. M.Misur,  D.Mitrovic, On compactness of commutator of multiplication and pseudodifferential operator, Journal of Pseudo-Differential Operators and Applications, 10 (2019), 121-131. https://doi.org/10.1007/s11868-018-0239-y

​

40. H.Kalisch, D.Mitrovic, V.Teyekpiti, Existence and Uniqueness of Singular Solutions for a Conservation Law Arising in Magnetohydrodynamics,  Nonlinearity 31 (2018), 5463-5483. http://dx.doi.org/10.1088/1361-6544/aae04b

​

39. Mitrovic, D.; Novak, A.; Uzunovic, T.: Averaged Control for Fractional ODEs and Fractional Diffusion Equations, Journal of function spaces 2018 (2018), ID 8095728, 12 pages. http://dx.doi.org/10.1155/2018/8095728

​

38. Antonic, N.; Misur, M.; Mitrovic, D.: On compactness of commutators of multiplications and Fourier multipliers, Mediterranean Journal of Mathematics 15 (2018), 170 (13 pages). http://dx.doi.org/10.1007/s00009-018-1215-8

​

37. Mitrovi\'c, D.; Novak, A.: Transport-collapse scheme for heterogeneous scalar conservation laws, Journal of Hyperbolic Differential Equations 15 (2018), 119-132. http://dx.doi.org/10.4310/CMS.2017.v15.n4.a7

​

36. Graf, M.; Kunzinger, M.; Mitrovic, D.: Well-posedness theory for degenerate parabolic equations on Riemannian manifolds, Journal of Differential Equations 263 (2017), 4787-4825.  https://doi.org/10.1016/j.jde.2017.06.001

​

35. Kalisch H.; Mitrović, D.; Vincent Teyekpiti, V.: Delta Shock Waves in Shallow Water Flow, Physics Letters A 381 (2017), 1138-1144

​

34. Lazar, M; Mitrović, D: Existence of solutions for a scalar conservation law with a flux of low regularity, Electronic Journal of Differential Equations Vol. 2016 (2016), No. 325, pp. 1-18.

​

33. Mitrovic, D.; Novak, A.: Transport-collapse scheme for scalar conservation laws - initial-boundary value problem, Communications in Mathematical Sciences 15 (2017), 1055-1071. http://dx.doi.org/10.4310/CMS.2017.v15.n4.a7

​

32. Lazar, M; Mitrovic, D.:  On a new Class of Functional Spacces with an Application to Velocity Averaging, Glasnik Matematicki 52 (2017), 115–130.

​

31. Misur, M; Mitrovic, D.; Novak, A.: On the Dirichlet-Neumann boundary problem for scalar conservation laws, Mathematical Modelling and Analysis 21 (2016), 685-698.

​

30. Marohnic, M.; Mitrovic, D. and Novak, A.: On a front evolution in porous media with a source - analysis and numerics, Bulletin of the Brazilian Mathematical Society, 47 (2016), 521-532

​

29. Kalisch, H.; Mitrovic, D.; Nordbotten, J.M.: Non-standard Shocks in the BuckleyLeverett Equation, Journal of Mathematical Analysis and Applications, 428 (2015), 882–895.

​

28. Mitrovic, D.; Novak, A.: Two phase nonturbulent flow with applications, Mathematical Problems in Engineering, Volume 2015 (2015), Article ID 439704, 8 pages

​

27. Misur, M.; Mitrovic, D.: On a generalization of compensated compactness in the $L^p-L^q$ setting, Journal of Functional Analysis 268 (2015), 1904-1927.

​

26. Kalisch, H.; Mitrovic, D., Nordbotten, J: Rayleigh-Taylor instability of immiscible fluids in porous media, Continuum Mechanics and Thermodynamics, 28 (2016), 721-731

​

25.  Andreianov, B.; Mitrovic, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincaré C Analyse Non Linéaire, 32 (2015), 1307-1335.

​

24.  Aleksic, J.; Mitrovic, D.: Strong traces for averaged solutions of heterogeneous ultraparabolic transport equations, J. of Hyperbolic Differential Equations 4 (2013), 659-676.

​

23. Mitrovic, D.: On a Leibnitz type formula for fractional derivatives, Filomat 27 (2013), 1141–1146.

​

22. Lazar, M; Mitrovic, D.: On an extension of a bilinear functional on Lp(Rd)xE to a Bochner space with an application on velocity averaging, C. R. Acad. Sci. Paris Ser. I Math.  351 (2013), 261--264.

​

21. Lazar, M.; Mitrovic, D.: Velocity averaging – general framework, Dynamics of Partial Differential Equations, 9 (2012), 239-260

​

20. Kalisch, H.; Mitrovic, D.: Singular solutions for the shallow water equations, IMA J. Appl. Maths, 77 (2012), 340-350.

​

19. Kalisch, H.; Mitrovic, D.: Singular solutions of a fully nonlinear 2x2 system of conservation laws, Proceedings of the Edinburgh Mathematical Society, 55 (2012), 711-729.

​

18.  Mitrovic, D.; Nordbotten, J.M.; Kalisch, H.: Dynamics of the interface between immiscible liquids of different densities with low Froude number, Nonlinear Analysis Real World Applications, 15 (2014), 361–366

​

17. Antonic, N.; Mitrovic, D.: H-distributions—an extension of the H-distributions in the Lp-Lq setting, Abstract and Applied Analysis, Volume 2011 (2011), Article ID 901084, 12 pages, doi:10.1155/2011/901084

​

16.  Mitrovic, D.; Ivec, I.: A Generalization of $H$-measures and Application on Purely Fractional Scalar Conservation Laws, Communication on Pure and Applied Analysis, 10 (2011), 1617 - 1627.

​

15. Lazar, M.; Mitrovic, D.: The velocity averaging for a heterogeneous heat type equation, Mathematical Communications, 16(2011), 271-282.

​

14. Danilov, V.G.; Mitrovic, D.: Shock Wave Formation Process for a Multidimensional Scalar Conservation Law, Quarterly of Applied Mathematics, 69 (2011), 613-634.

​

13.  Mitrovic, D.: New Entropy Conditions for Scalar Conservation Laws with Discontinuous Flux, Discrete and Continuous Dynamical Systems-A, 30 (2011), 1191-1210

​

12.  Mitrovic, D.: Existence and Stability of Multidimensional Scalar Conservation Laws with Discontinuous Flux, Networks and Heterogeneous Media, 5 (2010), 163-188

​

11. Mitrovic, D.; Bojkovic, V.; Danilov, V.G.: Linearization of the Riemann problem for a triangular system of conservation laws and delta shock wave formation process, Mathematical Methods in the Applied Sciences, Vol. 33 (2010), 904 - 921

​

10. Holden, H.; Karlsen, K.H.; Mitrovic, D.; Panov, E.Yu.: Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux functions, Acta Mathematica Scientia B  29 (2009), 1573-1672

​

9.  Aleksic, J.; Mitrovic, D.: On the compactness for two dimensional scalar conservation laws with discontinuous flux, Communications in Mathematical Sciences, 7 (2009), 963-971.

​

8. Aleksic, J.; Mitrovic, D.; Pilipovic, S.: Hyperbolic conservation laws with vanishing nonlinear diffusion and linear dispersion in heterogeneous media, Journal of Evolution Equations, 9 (2009), 809-828.

 

7. Mitrovic, D.: On the heat equation involving the δ-distribution as a coefficient, Mathematical and Computer Modeling, 50 (2009) 109-115

​

6. Danilov, V. G.; Mitrovic, D.: Smooth Approximations of Global in Time Solutions to Scalar Conservation Laws, Abstract and Applied Analysis, Volume 2009, Article ID 350762, 26 pages

​

5. Holden, H.; Karlsen, K.H.; Mitrovic, D: Zero diffusion dispersion limits for scalar conservation law with discontinuous flux function, International Journal of Differential Equations, Volume 2009, Article ID 279818, 33 pages.

​

4. Danilov, V. G.; Mitrovic, D.: Delta shock wave formation in the case of triangular hyperbolic system of conservation laws, Journal of Differential Equations, 245 (2008) 3704-3734

​

3. Mitrovic, D.; Nedeljkov, M.: Delta shock waves as a limit of shock waves, Journal of Hyperbolic Differential Equations, 4 (2007), 629-653.

 

2. Mitrovic, D.; Pilipovic, S.: Approximations of linear Dirichlet problems with singularities, J. Math. Anal. Appl.  313 (2006), 98-119.

 

1. Danilov, V.; Mitrovic, D.: Weak asymptotics of shock wave formation process, Nonlinear Anal. 61 (2005), 613-635.

Non-peer reviewed publications

7. K.H.Karlsen, M.Kunzinger, D.Mitrovic, {\em A dynamic capillarity equation with stochastic forcing on manifolds: a singular limit problem}, \url{https://arxiv.org/abs/2210.16882}.

​


6.  M.Jolic, S.Konjik, D.Mitrovic, {\em Control theory for nonlinear fractional dispersive systems}, \url{https://arxiv.org/abs/2212.12692}.

​

5. Mitrovic, D.: Scalar conservation law with discontinuous flux -

thickened entropy conditions and doubling of variables, Mathematica Aeterna, Vol. 1, 2011, no. 03, 163 --172

​

4. Bojkovic, V.; Mitrovic, D.: A characterization of Riemann invariants for 2×2 system of hyperbolic conservation laws, Journal of Mathematical Sciences:  Advances and Applications, Vol. 1, Number 3 (2008), 579-586

​

3. Mitrovic, D.: Singularity formation for a pressureless gas dynamics system of conservation laws, IEEE Catalog No. 06EX1351, ISBN 5-9651-0226-7, Days on Diffraction 2006, 197-208,

 (http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4154034)

​

2. Danilov, V.G.; Mitrovic, D.: New approach to shocks generation for conservation laws. Example: global solution to Hopf equation,  Matematicki Vesnik 56 (2004), 23-46.

​

1. Mitrovic, D.: Uniform in tєR description of shock wave formation process and application to convex scalar conservation law, Mathematica Montisnigri, Vol XVII (2004) 37-55.

Home: Experience

Oskar Morgenstern Platz-1, 1090 Wien

  • Facebook
  • Twitter
  • LinkedIn
Home: Contact
  • Facebook
  • Twitter
  • LinkedIn

©2020 by Darko Mitrovic. Proudly created with Wix.com

bottom of page